Victor Levallois – 21/11/2023

Pierre Peterlongo (Inria, Rennes) Yoann Dufresne (Institut Pasteur, Paris)

The Backpack Quotient Filter: A Space-Efficient Approach to **Counting Quotient Filter**

Main operation :

[1] (Fan & al., 2000)
[2] (Putze & al., 2010)
[3] (Solomon & Kingsford, 2016)

[4] (Breslow & al., 2018)

[5] (Dillinger & Walzer, 2011) [6] (Graf & Lemire, 2022) [7] (Pandey & al., 2017)

AMQs : The Approximate Membership Queries

Bloom Filter

Counting Bloom filter [1] Blocked Bloom filter [2] Sequence Bloom Trie [3] Morton filter [4]

Ribbon filter [5] Binary fuse filter [6]

Quotient Filter

Counting Quotient Filter [7] Backpack Quotient Filter Table containing 2q slots of size rq = |quotient|r = |remainder|

			1101				
0	1	2	3	4	5	6	7

(soft) **Collisions** case : remainder shifting (hard collision : false positive)

			1100	1101			
0	1	2	3	4	5	6	7

(soft) **Collisions** case : remainder shifting (hard collision : false positive)

-> sub-optimal for multiple insertions of the same k-mer

[7] A General-Purpose Counting Filter: Making Every Bit Count (Pandey et al., 2017)

CQF abundances

CQF [7] – Counting Quotient Filter -> 1 slot = 1 remainder OR 1 count

←r →

 $\alpha(\mathbf{x}) = kmer \ K \ abundance \ for \ which \ remainder(K) = \mathbf{x}$

BQF – Backpack Quotient Filter, our contribution -> 1 slot = 1 remainder AND 1 count

slot

 $\alpha(\mathbf{x}) = \text{kmer K}$ abundance for which remainder(K) = \mathbf{x}

[8] fimpera: drastic improvement of Approximate Membership Query data-structures with counts (Robidou et Peterlongo, 2022)

BQF abundances

BQF – Backpack Quotient Filter uses Fimpera [8]

/!\ construction false positive /!\

-> space gain (2*z bits / slot)

[8] fimpera: drastic improvement of Approximate Membership Query data-structures with counts (Robidou et Peterlongo, 2022)

BQF abundances

BQF – Backpack Quotient Filter uses Fimpera [8]

-> Linear gain as **s** decreases, but threshold reached when requests become too sensitive

False positive rate, depending on s, k=31

Results from an experiment on metagenomic data (Tara Oceans Project)

- -> https://www.ebi.ac.uk/ena/browser/view/ERS488262
- -> 1.583 billions of unique 32-mers to index

	<mark>CQF</mark> (q=31)	BQF (q=31, z=9, c=5)
Data Structure Size	9,43 GB	6,17 GB
Load factor	90,9 %	74,8 %
False-positive rate	0	2*10 ⁻¹¹
Building (insertions)	20 min	23 min
Positive query speed	2.5M kmer/s	4M kmer/s
Negative query speed	3M kmer/s	5.1M kmer/s

Performances measured while querying ~100bp long sequences

Memory usage as a function of the number of distincts elements inserted (counts from Tara Oceans Dataset, 32-mers, z=9 & c=5 for BQF)

15

Memory usage as a function of the number of distincts elements inserted (counts from Tara Oceans Dataset, 32-mers, z=9 & c=5 for BQF)

16

Memory usage as a function of the number of distincts elements inserted (counts from Tara Oceans Dataset, 32-mers, z=9 & c=5 for BQF)

17

- CQF : High value abundances storage
- BQF :
 - Built-in counters -> less used slots
 - Fimpera -> space gain / slot
 - (+) Overall space gain
 - (-) Construction false positive
 - Project available
 - <u>https://github.com/vicLeva/bqf</u>
 - Usable tool
 - Detailed experiments

4

Benefits from using locality preserving hash function ?

Indexing proteic datas ?

Thank you

Questions time

https://github.com/vicLeva/bqf

(forked from https://github.com/frankandreace/cqf implementation, thanks to Francesco Andreace)

Occi	upied nend														
0	0	1	0	0	0	1	1	0	0	0	1	0	0	1	1
		h ₂	(a)	h ₂	(b)	h ₂	(c)	h ₂	(d)	h ₂	(e)			h2	2(f)
()		1		2 3		4	1	5	5	(6		7	

Shifted runs

counting	Backpack counting					
Metadata	Bits addition	Bits sacrifice	Nucl sacrifice			
1: r+1 , 2+: 2r+2	1+:r+c	1+ : r	1+ : r			
adds 2 ^q bits of metadata each time an element has a count > 1: takes other element's place	adds c x 2 ^q bits of data	None	None ~Yes (exact count) (rehash into cut kmer)			
Yes	Exact count : yes Otherwise : no	No				
None	None	FPrate : 0 -> (2 ⁵ -1) / 2 ^r	FPrate : 0 -> (4 ⁵ - 1) / 4 ^k			
1 extra metadata lookup	Good	Good	Good			
Good for having exact and important counts dynamic Better with lots of 3+ occurences	Flexible, can exact count with few bits or order of magnitudes if necessary Insert everything at init	Ultra space efficient at FP cost Insert everything at init	Ultra space efficient at FP cost dynamicity at even more FP cost			
	Metadata 1:r+1, 2+: 2r+2 adds 2 ^q bits of metadata each time an element has a count > 1: takes other element's place Yes None 1 extra metadata lookup Good for having exact and important counts dynamic Better with lots of 3+ occurences	Metadata Bits addition Metadata Bits addition 1:r+1, 2+: 2r+2 1+: r + c adds 2 ^q bits of metadata each time an element has a count > 1: takes other element's place adds c x 2 ^q bits of data Yes Exact count : yes Otherwise : no None None 1 extra metadata lookup Good Good for having exact and important counts dynamic Flexible, can exact count with few bits or order of magnitudes if necessary Insert everything at init	CountingBackpack countingMetadataBits additionBits sacrificeI:r+1, 2+: 2r+2I+: r + 0I+: radds 2 ^q bits of metadata each time an element has a count > 1: takes other element's placeI+: r + 0I+: rVesExact count : yes Otherwise : noNoNoneNoneFPrate : 0 -> (2 ^g - 1) / 2 ^f 1 extra metadata lookupGoodGoodCounts: dynamic Better with lots of 3+ occurencesFlexible, can exact count with few bits or order of magnitudes if necessary Insert everything at initUltra space efficient at FP cost Insert everything at init			

