Pierre Peterlongo (Inria, Rennes)

Victor Levallois - 21/11/2023

Yoann Dufresne (Institut Pasteur, Paris)

M

GTAACGTATT

CTGCATTGCATAA
GAC

The Backpack Quotient Filter:
A Space-Efficient Approach to
Counting Quotient Filter

%
| u r ’ @
N Université p { f) INSTITUT s%,;o@
'>"<' de Rennes &LW PASTEUR sf 6% 7

Motivations

@E@@%@

Reads Fastq, fasta ENA

DNA/RNA Sequencing

Goal: U — @ | i
) sequence | |

Motivations

Main operation :

sequence
— Absent
k-mers m— Query /

] ? [V- \
Present (7)

[1] (Fan & al., 2000)
[2] (Putze & al., 2010)
[3] (Solomon & Kingsford, 2016)

Motivations

AMQs : The Approximate Membership Queries

Bloom Filter

Counting Bloom filter [1]
Blocked Bloom filter [2]
Sequence Bloom Trie [3]

[4] (Breslow & al., 2018)

Cukoo Filter

Morton filter [4]

[5] (Dillinger & Walzer, 2011)
[6] (Graf & Lemire, 2022)

XOR Filter

Ribbon filter [5]
Binary fuse filter [6]

[7] (Pandey & al., 2017)

-

_

Quotient Filter

Counting Quotient Filter [7]

Backpack Quotient Filter

~

J

Context : Quotient Filter

Table containing 24 slots of size r g = |lquotient]
r = [remainder|

hash(ACCTG) = 1101011

‘:L quotient =011 =3
remainder = 1101

1101

0 1 2 3 4

Quotient Filter

(soft) Collisions case : remainder shifting
(hard collision : false positive)

hash(TTTTA) = 1100011

:L quotient =011 =3
remainder = 1100

1100

1101

Quotient Filter

(soft) Collisions case : remainder shifting
(hard collision : false positive)

Runend

1100 1101

-> sub-optimal for multiple insertions of the same k-mer

Abundance Count

Query
sequence

——— Abundance

]] Index

]
| I—
]

Dataset

[71 A CGeneral-Purpose Counting Filter: Making Every Bit Count (Pandey et al., 2017)

CQF abundances

CQF [7] - Counting Quotient Filter
->1slot =1 remainder OR 1 count

«—[—»

1 1 6 3 6 34 0 154

a(1) =2 «(6) =5 «(34) = 155

o(x) = kmer K abundance for which remainder(K) = x

BOF abundances

BOF - Backpack Quotient Filter, our contribution

->1slot =1 remainder AND 1 count

|| |
1 12l 6 Is
.
L1

|

34 |154
=
|

af1)=2

o(6)=5

o(34)=155

o(x) = kmer K abundance for which remainder(K) = x

10

[8] fimpera: drastic improvement of Approximate Membership Query data-structures with counts (Robidou et Peterlongo, 2022)

BOF abundances

BQF - Backpack Quotient Filter
uses Fimpera s]

-> space gain (2*z bits / slot)

/\ construction false positive /!\

1

[8] fimpera: drastic improvement of Approximate Membership Query data-structures with counts (Robidou et Peterlongo, 2022)

BOF abundances

BQF - Backpack Quotient Filter

uses Fimpera]

Genomic sequence

7 k-mers

Speed impact ?

9 s-mers

12

BOF fimpera

-> Linear gain as s
decreases, but threshold
reached when requests
become too sensitive

False positive rate, depending on s, k=31

o
o E X Sd EJdEEDE | H
= " -= - construction FP
I
O] |
0o '.
— 1
O]
S @ |
Q ‘.
© \
O]
& < \
m
o \
(Q\ \
o - EEJEXSEIEESERXSE &
| | I I | | |
0 5 10 15 20 25 30
s value

13

Results

Results from an experiment on metagenomic data (Tara Oceans Project)
-> https://www.ebi.ac.uk/ena/browser/view/ERS488262
-> 1.583 billions of unique 32-mers to index

CQF (g=31)
Data Structure Size 9,43 GB
Load factor 90,9 %
False-positive rate o)
Building (insertions) 20 min
Positive query speed 2.5M kmer/s
Negative query speed 3M kmer/s

Performances measured while querying ~100bp long sequences

BOF (g=31, z=9, c=5)
6,17 GB
74,8 %
2*10—11
23 min
4M kmer/s

5.1M kmer/s

14

Results

120

Memory usage as a function of the number of distincts elements inserted
(counts from Tara Oceans Dataset, 32-mers, z=9 & c=5 for BQF)

100 +

80

60 -

Memory used (GB)

40 -

20 A

elements inserted (billions)

10

15

Results

Memory usage as a function of the number of distincts elements inserted

126 (counts from Tara Oceans Dataset, 32-mers, z=9 & c=5 for BQF)

—— CQF_loccs_and_more

100

80

60

Memory used (GB)

40

20

elements inserted (billions)

Results

Memory usage as a function of the number of distincts elements inserted
(counts from Tara Oceans Dataset, 32-mers, z=9 & c=5 for BQF)

—— CQF loccs and_more
—— (CQF_2occs_and_more
120 ~
100 1
80 +
@
2
=
@
%}
=1
=
5 60
£
[1F]
=
40 1
201
0 - Jé

elements inserted (billions)

10

17

Conclusion

= CQF : High value abundances storage
= BOQF:
Built-in counters -> less used slots
Fimpera -> space gain / slot
(+) Overall space gain
(-) Construction false positive
Project available

https://github.com/vicleva/bqgf

Usable tool
Detailed experiments

18

Perspectives

1

BOF publication

Fondation

: 1'3 ra qcean Scalingup ? -60TB

er et partager

o Benefits from using locality preserving hash function ?

: Indexing proteic datas ?

19

Thank you

Questions time

https://github.com/vicLeva/bgf
(forked from https://github.com/frankandreace/cqf implementation, thanks to Francesco Andreace)

20

https://github.com/frankandreace/cqf_implementation

o Additional
< resources

4k k-mers -> |hash| = 2*k A Every possible smer
4s s-mers -> |hash| = 2*s 4% s-mers

s-mers to index

n s-mers
L k -
KMER o
SMER 1 [P E———
SMER 2 — aus p {bits)
xorshift_64 = =
—“—.)
SMER 3 re——— REMAINDER QUOTIENT HASH
i % < rec— >
S (nucleotides) r q
. w
Remainder _ at position Quotient
0 64 128 { 29
«— > L_q
1 block : Shift of 7 slots
64 slots because of blue
Summary run

22

Occupied
Runend

0 0

23

Paper counting Backpack counting

Original Metadata Bits addition Bits sacrifice Nucl sacrifice
Counter size (remainder + count) —--> . F . - -
Aor, 220, 3430 (s1) . 204t (+1) 1ir+1, 2422042 1+ir+c 1+:r 1+:r
Impact on filter space —> adds 29 bits of metadata
each time an element has a count > 1: each time an element has a count > 1: adds ¢ x 29 bits of data None None
takes other elements’ places takes other element's place
Dynamicity —--> Yes Exact count : yes No ~Yes (exact count)
Yes Otherwise : no (rehash into cut kmer)
m':"” positive —> None None FPrate : 0 -> (25 -1) / 2 FPrate : 0 -> (4% -1) / 4
Speed perfs «-->
Needs special encoding / decoding for each 1 extra metadata lookup Good Good Good
counter
Use case >
Original implementation . ;
Good for having exact and important Good for-havirng exact s important Flexible, can exact count 5 Ultra space efficient at FP

counts : : Ultra space efficient at FP
counts d 3 with few bits or order of cost
ynamic cost

dynamic

Better than the other variant if lots of
1&2

occurence(s)

Better with lots of 3+ occurences

magnitudes if necessary
Insert everything at init

Insert everything at init

dynamicity at even more
FP cost

Theory

>

A

29 slots

<«— 1 block ——

Y

Offset
Occupied
Runend

A

Slot Slot
A 64
Y

< 64 >

Overview

&

25

Offset

Occupied

Runend

62

63

63

64

A

64 bits

In memory

&

26

L

	Slide 1
	Slide 2: Motivations
	Slide 3: Motivations
	Slide 4: Motivations
	Slide 5: Context : Quotient Filter
	Slide 6: Quotient Filter
	Slide 7: Quotient Filter
	Slide 8: Abundance Count
	Slide 9: CQF abundances
	Slide 10: BQF abundances
	Slide 11: BQF abundances
	Slide 12: BQF abundances
	Slide 13: BQF fimpera
	Slide 14: Results
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Conclusion
	Slide 19
	Slide 20: Thank you
	Slide 21: Additional resources
	Slide 22: Summary
	Slide 23: Shifted runs
	Slide 24: Theory
	Slide 25: Overview
	Slide 26: In memory

